Exemplos 8

From Matemática
(Difference between revisions)
Jump to: navigation, search
(Created page with "Determine as equações das assímptotas ao gráfico de cada uma das funções: \begin{enumerate} \item $f(x)=\frac{x+1}{x-1}$ \item $g(x)=(x+1)e^{\frac{1}{x}}$ \end{enumerate...")
 
Line 1: Line 1:
 
Determine as equações das assímptotas ao gráfico de cada uma das funções:
 
Determine as equações das assímptotas ao gráfico de cada uma das funções:
\begin{enumerate}
+
'''1.''' $f(x)=\frac{x+1}{x-1}$
\item $f(x)=\frac{x+1}{x-1}$
+
'''2.''' $g(x)=(x+1)e^{\frac{1}{x}}$
\item $g(x)=(x+1)e^{\frac{1}{x}}$
+
\end{enumerate}
+
  
\vspace{15mm}
+
 
\textbf{Resolução:}\\
+
[[Resolução 8|Resolução]]
 
\begin{enumerate}
 
\begin{enumerate}
 
\item $\DS \lim_{x \to 1^{-}} f(x)=-\infty$ e $\DS \lim_{x \to 1^{+}} f(x)=+\infty$,\\
 
\item $\DS \lim_{x \to 1^{-}} f(x)=-\infty$ e $\DS \lim_{x \to 1^{+}} f(x)=+\infty$,\\

Revision as of 15:28, 15 November 2012

Determine as equações das assímptotas ao gráfico de cada uma das funções: 1. $f(x)=\frac{x+1}{x-1}$ 2. $g(x)=(x+1)e^{\frac{1}{x}}$


Resolução \begin{enumerate} \item $\DS \lim_{x \to 1^{-}} f(x)=-\infty$ e $\DS \lim_{x \to 1^{+}} f(x)=+\infty$,\\

logo a recta $x=1$ é assímptota vertical ao gráfico de $f$.\\
\vspace{0,2cm}

$m=\DS \lim_{x \to \pm\infty} \frac{f(x)}{x}=\DS \lim_{x \to \pm\infty} \frac{x+1}{x^2-x}=0$ e $b=\DS \lim_{x \to\pm\infty} f(x)=1$, logo a recta $y=1$ é assímptota horizontal bilateral ao gráfico de $f$.\\

\item $\DS \lim_{x \to 0^{+}} g(x)=+\infty$ e $\DS \lim_{x \to 0^{-}} g(x)=0$, logo $x=0$ é assímptota vertical.\\

\vspace{0,2cm} $m=\DS \lim_{x \to +\infty} \frac{g(x)}{x}= \DS \lim_{x \to \pm\infty} \frac{(x+1)e^{\frac{1}{x}}}{x}= \DS \lim_{x \to \pm\infty} \left[\left(1+\frac{1}{x}\right)e^{\frac{1}{x}}\right]=1$\\

\vspace{0,2cm} $ \begin{aligned} b=\DS \lim_{x \to +\infty}\left(g(x)-x\right)&= \DS \lim_{x \to \pm\infty}\left((x+1)e^{\frac{1}{x}}-x\right)= \DS \lim_{x \to \pm\infty}\left((x+1)e^{\frac{1}{x}}-(x+1)+1\right)\\&= \DS \lim_{x \to \pm\infty}\left[(x+1)(e^{\frac{1}{x}}-1)\right]+1= \DS \lim_{x \to \pm\infty}\left[\frac{x+1}{x}\cdot \frac{e^{\frac{1}{x}}-1}{\frac{1}{x}}\right]+1=1 \cdot 1+1=2\end{aligned} $\\

\vspace{0,2cm}

A recta $y=x+2$ é assímptota oblíqua bilateral ao gráfico de $g$.
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox