Resolução 12

From Matemática
(Difference between revisions)
Jump to: navigation, search
(Created page with "'''1.''' $\displaystyle \lim_{x \to 1^{-}} f(x)=-\infty$ e $\displaystyle \lim_{x \to 1^{+}} f(x)=+\infty$,\\ logo a recta $x=1$ é assímptota vertical ao gráfico de $f$.\\...")
 
Line 1: Line 1:
'''1.''' $\displaystyle \lim_{x \to 1^{-}} f(x)=-\infty$ e $\displaystyle \lim_{x \to 1^{+}} f(x)=+\infty$,\\
+
'''1.''' $\displaystyle \lim_{x \to 1^{-}} f(x)=-\infty$ e $\displaystyle \lim_{x \to 1^{+}} f(x)=+\infty$, logo a recta $x=1$ é assíntota vertical ao gráfico de $f$.
logo a recta $x=1$ é assímptota vertical ao gráfico de $f$.\\
+
  
\vspace{0,2cm}
 
 
$m=\displaystyle \lim_{x \to \pm\infty} \frac{f(x)}{x}=\displaystyle \lim_{x \to \pm\infty} \frac{x+1}{x^2-x}=0$ e
 
$m=\displaystyle \lim_{x \to \pm\infty} \frac{f(x)}{x}=\displaystyle \lim_{x \to \pm\infty} \frac{x+1}{x^2-x}=0$ e
$b=\displaystyle \lim_{x \to\pm\infty} f(x)=1$, logo a recta $y=1$ é assímptota horizontal
+
$b=\displaystyle \lim_{x \to\pm\infty} f(x)=1$, logo a recta $y=1$ é assímptota horizontal bilateral ao gráfico de $f$.
bilateral ao gráfico de $f$.\\
+
  
\item $\displaystyle \lim_{x \to 0^{+}} g(x)=+\infty$ e $\displaystyle \lim_{x \to 0^{-}} g(x)=0$, logo $x=0$
+
'''2.''' $\displaystyle \lim_{x \to 0^{+}} g(x)=+\infty$ e $\displaystyle \lim_{x \to 0^{-}} g(x)=0$, logo $x=0$ é assíntota vertical.
é assímptota vertical.\\
+
  
\vspace{0,2cm}
+
$m=\displaystyle \lim_{x \to +\infty} \frac{g(x)}{x}= \displaystyle \lim_{x \to \pm\infty} \frac{(x+1)e^{\frac{1}{x}}}{x}=
$m=\displaystyle \lim_{x \to +\infty} \frac{g(x)}{x}=
+
\displaystyle \lim_{x \to \pm\infty} \left[\left(1+\frac{1}{x}\right)e^{\frac{1}{x}}\right]=1$
\displaystyle \lim_{x \to \pm\infty} \frac{(x+1)e^{\frac{1}{x}}}{x}=
+
\displaystyle \lim_{x \to \pm\infty} \left[\left(1+\frac{1}{x}\right)e^{\frac{1}{x}}\right]=1$\\
+
  
\vspace{0,2cm}
 
 
$
 
$
 
\begin{aligned}
 
\begin{aligned}
Line 23: Line 16:
 
\displaystyle \lim_{x \to \pm\infty}\left[(x+1)(e^{\frac{1}{x}}-1)\right]+1=
 
\displaystyle \lim_{x \to \pm\infty}\left[(x+1)(e^{\frac{1}{x}}-1)\right]+1=
 
\displaystyle \lim_{x \to \pm\infty}\left[\frac{x+1}{x}\cdot \frac{e^{\frac{1}{x}}-1}{\frac{1}{x}}\right]+1=1 \cdot 1+1=2\end{aligned}
 
\displaystyle \lim_{x \to \pm\infty}\left[\frac{x+1}{x}\cdot \frac{e^{\frac{1}{x}}-1}{\frac{1}{x}}\right]+1=1 \cdot 1+1=2\end{aligned}
$\\
+
$
 +
 
 +
A reta $y=x+2$ é assíntota oblíqua bilateral ao gráfico de $g$.
  
\vspace{0,2cm}
+
[[Exemplos ]]
A recta $y=x+2$ é assímptota oblíqua bilateral ao gráfico de $g$.
+

Revision as of 15:39, 15 November 2012

1. $\displaystyle \lim_{x \to 1^{-}} f(x)=-\infty$ e $\displaystyle \lim_{x \to 1^{+}} f(x)=+\infty$, logo a recta $x=1$ é assíntota vertical ao gráfico de $f$.

$m=\displaystyle \lim_{x \to \pm\infty} \frac{f(x)}{x}=\displaystyle \lim_{x \to \pm\infty} \frac{x+1}{x^2-x}=0$ e $b=\displaystyle \lim_{x \to\pm\infty} f(x)=1$, logo a recta $y=1$ é assímptota horizontal bilateral ao gráfico de $f$.

2. $\displaystyle \lim_{x \to 0^{+}} g(x)=+\infty$ e $\displaystyle \lim_{x \to 0^{-}} g(x)=0$, logo $x=0$ é assíntota vertical.

$m=\displaystyle \lim_{x \to +\infty} \frac{g(x)}{x}= \displaystyle \lim_{x \to \pm\infty} \frac{(x+1)e^{\frac{1}{x}}}{x}= \displaystyle \lim_{x \to \pm\infty} \left[\left(1+\frac{1}{x}\right)e^{\frac{1}{x}}\right]=1$

$ \begin{aligned} b=\displaystyle \lim_{x \to +\infty}\left(g(x)-x\right)&= \displaystyle \lim_{x \to \pm\infty}\left((x+1)e^{\frac{1}{x}}-x\right)= \displaystyle \lim_{x \to \pm\infty}\left((x+1)e^{\frac{1}{x}}-(x+1)+1\right)\\&= \displaystyle \lim_{x \to \pm\infty}\left[(x+1)(e^{\frac{1}{x}}-1)\right]+1= \displaystyle \lim_{x \to \pm\infty}\left[\frac{x+1}{x}\cdot \frac{e^{\frac{1}{x}}-1}{\frac{1}{x}}\right]+1=1 \cdot 1+1=2\end{aligned} $

A reta $y=x+2$ é assíntota oblíqua bilateral ao gráfico de $g$.

Exemplos

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox