Função logarítmica
(→Função logarítmica de base $a$, com $0<a<1$) |
(→Função logarítmica de base $a$, com $0<a<1$) |
||
| Line 56: | Line 56: | ||
$$\displaystyle \lim_{x\to+\infty }\log_a x =-\infty.$$ | $$\displaystyle \lim_{x\to+\infty }\log_a x =-\infty.$$ | ||
|} | |} | ||
| − | [[Matemática Elementar#Função logarítmica|Voltar]] | + | [[Matemática Elementar#Função logarítmica|Voltar]] [[Exemplos 5|Seguinte]] |
Revision as of 10:48, 19 November 2012
Chama-se função logarítmica de base $a$, com $a>0$ e $a\neq 1$, à correspondência $$\begin{array}{llll} g: &\mathbb{R^+} & \longrightarrow& \mathbb{R} \\ & x & \longmapsto & \log_a{x}, \end{array}$$
A função logarítmica é a inversa da função exponencial, isto é, $$\begin{array}{ccc} \begin{array}{llll} f: &\mathbb{R} &\longrightarrow & \mathbb{R} \\ & y & \longmapsto & x=a^y \end{array} & \hspace{1cm} & \begin{array}{llll} f^{-1}=g: &\mathbb{R^+} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & y=\log_a{x} \end{array} \end{array} $$ Como o domínio da exponencial é $\mathbb{R}$ e o contradomínio é $\mathbb{R}^+$, o domínio da função logarítmica é $\mathbb{R}^+$, o contradomínio da exponencial, e o contradomínio da função logarítmica é $\mathbb{R}$, o domínio da exponencial. Note-se que, pelas propriedades dos logaritmos, temos $$\left(f^{-1}\circ f\right)(x)=\log_a{a^x}=x \hspace{0.5cm} \mbox{ e }\hspace{0.5cm} \left(f\circ f^{-1}\right)(y)=a^{\log_a{y}}=y.$$
Função logarítmica de base $a$, com $a>1$
Observe-se que:
- se $a=e$, temos $\ln{0.1}\approx -2.3$, $\ln{10^{-7}}\approx -13.8$, $\ln{10^{-10}}\approx-23.0$, $\ldots$.
- se $a=1.1$, $\log_{1.1}{0.1}\approx -24.2$, $\log_{1.1}{10^{-7}}\approx -169.1$, $\ldots$.
- $\ln{10}\approx 2.3$, $\ln{10^{7}}\approx 16.1$, $\ln{10^{10}}\approx 23.0$, $\ldots$.
- $\log_{1.1}{10}\approx 24.2$, $\log_{1.1}{10^{7}}\approx 169.1$, $\ldots$.

