Potências 1

From Matemática
(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
 
Complete, apresentando o resultado sob a forma de potência:
 
Complete, apresentando o resultado sob a forma de potência:
# $\displaystyle 2^{-2} \times 2^{3}$=_____________;  
+
# $\displaystyle 2^{-2} \times 2^{3}$=
 +
----
 +
;  
 
#  $\displaystyle \frac{4^{3}}{4^{-2}}$=\underline{\hspace{1,2cm}};  
 
#  $\displaystyle \frac{4^{3}}{4^{-2}}$=\underline{\hspace{1,2cm}};  
 
# $\displaystyle 3^{5} \times \left(-1\right)^{5}$=\underline{\hspace{1,2cm}};  
 
# $\displaystyle 3^{5} \times \left(-1\right)^{5}$=\underline{\hspace{1,2cm}};  
 
# $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$=\underline{\hspace{1,2cm}};  
 
# $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$=\underline{\hspace{1,2cm}};  
 
# $\displaystyle \left(3^{-1}\right)^{-2}$=\underline{\hspace{1,2cm}}.
 
# $\displaystyle \left(3^{-1}\right)^{-2}$=\underline{\hspace{1,2cm}}.

Revision as of 15:28, 8 January 2013

Complete, apresentando o resultado sob a forma de potência:

  1. $\displaystyle 2^{-2} \times 2^{3}$=

  1. $\displaystyle \frac{4^{3}}{4^{-2}}$=\underline{\hspace{1,2cm}};
  2. $\displaystyle 3^{5} \times \left(-1\right)^{5}$=\underline{\hspace{1,2cm}};
  3. $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$=\underline{\hspace{1,2cm}};
  4. $\displaystyle \left(3^{-1}\right)^{-2}$=\underline{\hspace{1,2cm}}.
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox