Exemplo 2

From Matemática
(Difference between revisions)
Jump to: navigation, search
(Exemplo 2)
(Exemplo 2)
Line 21: Line 21:
 
|}
 
|}
  
[[Polinómios|Voltar]]
+
Então, $$p(x)=q(x) \times d(x) + r(x) \, \Leftrightarrow \, x^5+4x^2-2=(x^3-2x+4)(x^2+2)+(4x-10)$$
  
  
Então, $$p(x)=q(x) \times d(x) + r(x) \, \Leftrightarrow \, x^5+4x^2-2=(x^3-2x+4)(x^2+2)+(4x-10)$$
+
[[Polinómios|Voltar]]

Revision as of 09:31, 25 October 2012

Exemplo 2

Determine o quociente, $q(x)$, e o resto, $r(x)$, da divisão de $p(x)=x^5+4x^2-2$ por $d(x)=x^2+2$.

$x^5+0x^4+0x^3+4x^2+0x-2$ $x^2+2$
$-x^5+0x^4-2x^3+0x^2+0x+0$ $x^3-2x+4$
$-2x^3+4x^2+0x+0$
$+2x^3+0x^2+4x+0$
$4x^2+4x-2$
$-4x^2+0x-8$
$4x-10$

Então, $$p(x)=q(x) \times d(x) + r(x) \, \Leftrightarrow \, x^5+4x^2-2=(x^3-2x+4)(x^2+2)+(4x-10)$$


Voltar

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox