Exemplos 7

From Matemática
Revision as of 19:37, 14 November 2012 by Paula.oliveira (Talk | contribs)

Jump to: navigation, search

Exemplo 1

Calcule, caso existam, cada um dos seguintes limites:

1. $\displaystyle \lim_{x \to +\infty} \frac{1}{x-3}$

2. $\displaystyle \lim_{x \to 3} \frac{1}{x-3}$

3. $\displaystyle \lim_{x \to 2^-} \frac{1}{2-x}$

4. $\displaystyle \lim_{x \to -1^+} \frac{1}{x^2-1}$

5. $\displaystyle \lim_{x \to 2} \ln(x-2)$

6. $\displaystyle \lim_{x \to 0} e^{\frac{1}{x}}$

Resolução

Exemplo 2

Calcule, caso existam, cada um dos seguintes limites:

1. $\displaystyle \lim_{x \to + \infty} \frac{3^{x} - 2^{x}}{3^{x+1}+ 2^{x-3}}$

2. $\displaystyle \lim_{x \to +\infty} \frac{3x^2-x-10}{x^2-x-2}$

3. $\displaystyle \lim_{x \to 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}$

4. $\displaystyle \lim_{t \to 0} \frac{1-\cos(t)}{\sin(t)}$

5. $\displaystyle \lim_{t \to 2} \frac{e^{2t-4}-1}{t-2}$

6. $\displaystyle \lim_{t \to +\infty}x^2\sin\frac{1}{x}$

7. $\displaystyle \lim_{x \to -\infty}xe^x$

8. $\displaystyle \lim_{x \to +\infty}\left(\sqrt{x}-\sqrt{x+1}\right)$

9. $\displaystyle\lim_{x \to +\infty}\left(\ln(3x^2+2)-\ln (x^2)\right)$

10. $\displaystyle \lim_{x \to \frac{\pi}{2}^+}\frac{\cos(x)}{1-\sin(x)}$

Resolução

Exemplo 3

Levantamento de indeterminações do tipo $\infty^0,\;0^0,\;1^\infty$)} Calcule, caso existam, cada um dos seguintes limites:\\

\begin{tabular}{lll} \textbf{1.} UNIQ68ae44f02b2970d4-MathJax-24-QINU & \textbf{2.} UNIQ68ae44f02b2970d4-MathJax-25-QINU & \textbf{3.} UNIQ68ae44f02b2970d4-MathJax-26-QINU \end{tabular}\\

\textbf{Resolução:} \begin{enumerate} \item $\DS \lim_{x \to 0^+}(1+2x)^{\frac{1}{x}}= \lim_{x \to 0^+}\left(1+\frac{2}{\frac{1}{x}}\right)^{\frac{1}{x}}=e^2$ (porque $\frac{1}{x}_{\overrightarrow{x\to0^+}}+\infty$)\\

\item $\DS \lim_{x \to +\infty}x^{\frac{1}{x}}=?$\\ Recorde-se que $\DS a^b=e^{b \ln{a}}$. Assim, $$x^{\frac{1}{x}}=e^{\frac{1}{x}\ln{x}}=e^{\frac{\ln{x}}{x}}$$ Como $$\DS \lim_{x \to +\infty}\frac{\ln x}{x}=0,$$ resulta que, $$\DS \lim_{x \to +\infty}x^{\frac{1}{x}}=e^0=1.$$


\item $\DS \lim_{x \to 0^+}x^x=?$\\ Analogamente ao exercício anterior $$x^{x}=e^{x\ln{x}}$$ Como $$\DS \lim_{x \to +\infty}x\ln x=0,$$ resulta que, $$\DS \lim_{x \to +\infty}x^{x}=e^0=1.$$ Voltar

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox