Resolução 11

From Matemática
Revision as of 19:40, 14 November 2012 by Paula.oliveira (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

1. $\displaystyle \lim_{x \to 0^+}(1+2x)^{\frac{1}{x}}= \lim_{x \to 0^+}\left(1+\frac{2}{\frac{1}{x}}\right)^{\frac{1}{x}}=e^2$ (porque $\frac{1}{x}_{\overrightarrow{x\to0^+}}+\infty$)

2. $\displaystyle \lim_{x \to +\infty}x^{\frac{1}{x}}=?$

Recorde-se que $\displaystyle a^b=e^{b \ln{a}}$. Assim, $$x^{\frac{1}{x}}=e^{\frac{1}{x}\ln{x}}=e^{\frac{\ln{x}}{x}}$$ Como $$\displaystyle \lim_{x \to +\infty}\frac{\ln x}{x}=0,$$ resulta que, $$\displaystyle \lim_{x \to +\infty}x^{\frac{1}{x}}=e^0=1.$$


3. $\displaystyle \lim_{x \to 0^+}x^x=?$

Analogamente ao exercício anterior $$x^{x}=e^{x\ln{x}}$$ Como $$\displaystyle \lim_{x \to +\infty}x\ln x=0,$$ resulta que, $$\displaystyle \lim_{x \to +\infty}x^{x}=e^0=1.$$

Voltar

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox