Operações com frações
From Matemática
Revision as of 09:55, 16 October 2012 by Paula.oliveira (Talk | contribs)
Operações com Frações
| Propriedades | Exemplos | Propriedades | Exemplos | |
|---|---|---|---|---|
| $\displaystyle \frac{a}{b}\pm \frac{c}{d}=\frac{ad\pm cb}{bd} \land b, d \ne 0$ | $\displaystyle \frac{2}{3}-\frac{4}{5}=\frac{2\times 5-4 \times 3}{3 \times 5}=-\frac{2}{15}$ | $\displaystyle \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd} \land b, d \ne 0$ | $\displaystyle \frac{2}{3}\times \frac{4}{5}=\frac{2\times 4}{3 \times 5}=\frac{8}{15}$ | |
| $\displaystyle \frac{\;\frac{a}{b}\;}{\frac{c}{d}}=\frac{ad}{bc} \land a, c, d \ne 0$ | $\displaystyle \frac{\frac{3}{5}}{\;\frac{7}{8}\;}= \frac{3 \times 8}{5 \times 7}=\frac{24}{35}$ | $\displaystyle \frac{ab+ac}{a} = b+c \land a\neq 0$ | $\displaystyle \frac{6+3}{3} = \frac{3 \times (2+1)}{3}=2+1=3$ | |
| $\displaystyle\frac{ab+c}{a} \neq b+c$ | $\displaystyle \frac{3 \times 2+1}{3}\ne 2+1$ | $\displaystyle \frac{b+c}a=\frac ba+\frac ca$ | $\displaystyle \frac{5+3}{4}= \frac{5}{4}+\frac{3}{4}$ | |
| $\displaystyle \frac{a}{b+c} \neq \frac ab + \frac ac$} | $\displaystyle \frac{4}{8}=\frac{4}{3+5} \neq \frac{4}{3} + \frac{4}{5}=\frac{32}{15}$ | $\displaystyle \frac{a+c}{b+d}\neq\frac ab+\frac cd$ | $\displaystyle \frac{8}{10}=\frac{3+5}{4+6} \neq \frac{3}{4}+\frac{5}{6}=\frac{38}{24}$ |
Exercícios Propostos
Utilizando os símbolos $=$ ou $\neq$, e impondo as condições necessárias, preencha os espaços de forma a que a afirmação resultante seja verdadeira. Justifique a sua resposta.
(a) $\displaystyle \frac{ab+ac}{a} \ \dots \ b+ac$.
(b) $\displaystyle \frac{a-b}{b-a} \ \dots \ -1 \ \land \ \dots \ $.
(c) $\displaystyle -(a+b) \ \dots \ -a+b$.
(d) $\displaystyle (a-b)-c \ \dots \ a-(b-c)$.
(e) $\displaystyle -\frac{\;a\;}{b} \ \dots \ \frac{\;-a\;}{b} \ \land \ \dots $.
(f) $\displaystyle \frac{\;\frac{a}{b}\;}{c} \ \dots \ \displaystyle\frac{\;a\;}{bc} \ \land \ \dots \ $