Potências 1

From Matemática
(Difference between revisions)
Jump to: navigation, search
 
(8 intermediate revisions by one user not shown)
Line 1: Line 1:
 
Complete, apresentando o resultado sob a forma de potência:
 
Complete, apresentando o resultado sob a forma de potência:
# $\displaystyle 2^{-2} \times 2^{3}$=_____________;
+
# $\displaystyle 2^{-2} \times 2^{3}$= ________
#  $\displaystyle \frac{4^{3}}{4^{-2}}$=\underline{\hspace{1,2cm}};
+
#  $\displaystyle \frac{4^{3}}{4^{-2}}$= ________
# $\displaystyle 3^{5} \times \left(-1\right)^{5}$=\underline{\hspace{1,2cm}};
+
# $\displaystyle 3^{5} \times \left(-1\right)^{5}$=________
# $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$=\underline{\hspace{1,2cm}};
+
# $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$= ________
# $\displaystyle \left(3^{-1}\right)^{-2}$=\underline{\hspace{1,2cm}}.
+
# $\displaystyle \left(3^{-1}\right)^{-2}$= ________     ([[Potências 1-Resolução|Resolução]])
 +
 
 +
[[Potências 2|Outro exercício]]       [[Potências|Voltar]]

Latest revision as of 16:22, 8 January 2013

Complete, apresentando o resultado sob a forma de potência:

  1. $\displaystyle 2^{-2} \times 2^{3}$= ________
  2. $\displaystyle \frac{4^{3}}{4^{-2}}$= ________
  3. $\displaystyle 3^{5} \times \left(-1\right)^{5}$=________
  4. $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$= ________
  5. $\displaystyle \left(3^{-1}\right)^{-2}$= ________   (Resolução)

Outro exercício     Voltar

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox