Potências 1
From Matemática
(Difference between revisions)
| (7 intermediate revisions by one user not shown) | |||
| Line 1: | Line 1: | ||
Complete, apresentando o resultado sob a forma de potência: | Complete, apresentando o resultado sob a forma de potência: | ||
| − | # $\displaystyle 2^{-2} \times 2^{3}$= | + | # $\displaystyle 2^{-2} \times 2^{3}$= ________ |
| − | + | # $\displaystyle \frac{4^{3}}{4^{-2}}$= ________ | |
| − | + | # $\displaystyle 3^{5} \times \left(-1\right)^{5}$=________ | |
| − | # $\displaystyle \frac{4^{3}}{4^{-2}}$= | + | # $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$= ________ |
| − | # $\displaystyle 3^{5} \times \left(-1\right)^{5}$= | + | # $\displaystyle \left(3^{-1}\right)^{-2}$= ________ ([[Potências 1-Resolução|Resolução]]) |
| − | # $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$= | + | |
| − | # $\displaystyle \left(3^{-1}\right)^{-2}$= | + | [[Potências 2|Outro exercício]] [[Potências|Voltar]] |
Latest revision as of 16:22, 8 January 2013
Complete, apresentando o resultado sob a forma de potência:
- $\displaystyle 2^{-2} \times 2^{3}$= ________
- $\displaystyle \frac{4^{3}}{4^{-2}}$= ________
- $\displaystyle 3^{5} \times \left(-1\right)^{5}$=________
- $\displaystyle \frac{\left(-1\right)^{-2}}{\left(-3\right)^{-2}}$= ________
- $\displaystyle \left(3^{-1}\right)^{-2}$= ________ (Resolução)