Operações com frações

From Matemática
(Difference between revisions)
Jump to: navigation, search
(Operações com Frações)
(Operações com frações)
 
(2 intermediate revisions by one user not shown)
Line 7: Line 7:
 
| $\displaystyle \frac{a}{b}\pm \frac{c}{d}=\frac{ad\pm cb}{bd} \land b, d \ne 0$ || $\displaystyle  \frac{2}{3}-\frac{4}{5}=\frac{2\times 5-4 \times 3}{3 \times 5}=-\frac{2}{15}$ || $\displaystyle  \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd} \land b, d \ne 0$ || $\displaystyle  \frac{2}{3}\times \frac{4}{5}=\frac{2\times 4}{3 \times 5}=\frac{8}{15}$
 
| $\displaystyle \frac{a}{b}\pm \frac{c}{d}=\frac{ad\pm cb}{bd} \land b, d \ne 0$ || $\displaystyle  \frac{2}{3}-\frac{4}{5}=\frac{2\times 5-4 \times 3}{3 \times 5}=-\frac{2}{15}$ || $\displaystyle  \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd} \land b, d \ne 0$ || $\displaystyle  \frac{2}{3}\times \frac{4}{5}=\frac{2\times 4}{3 \times 5}=\frac{8}{15}$
 
|-
 
|-
| $\displaystyle \frac{\;\frac{a}{b}\;}{\frac{c}{d}}=\frac{ad}{bc} \land a, c, d \ne 0$ || $\displaystyle \frac{\frac{3}{5}}{\;\frac{7}{8}\;}= \frac{3 \times 8}{5 \times 7}=\frac{24}{35}$ || $\displaystyle \frac{ab+ac}{a} = b+c \land a\neq 0$ || $\displaystyle  \frac{6+3}{3} = \frac{3 \times (2+1)}{3}=2+1=3$  
+
| $\displaystyle \frac{\;\frac{a}{b}\;}{\frac{c}{d}}=\frac{ad}{bc} \land b, c, d \ne 0$ || $\displaystyle \frac{\frac{3}{5}}{\;\frac{7}{8}\;}= \frac{3 \times 8}{5 \times 7}=\frac{24}{35}$ || $\displaystyle \frac{ab+ac}{a} = b+c \land a\neq 0$ || $\displaystyle  \frac{6+3}{3} = \frac{3 \times (2+1)}{3}=2+1=3$  
 
|-
 
|-
 
| $\displaystyle\frac{ab+c}{a} \neq b+c$ || $\displaystyle \frac{3 \times 2+1}{3}\ne
 
| $\displaystyle\frac{ab+c}{a} \neq b+c$ || $\displaystyle \frac{3 \times 2+1}{3}\ne
Line 13: Line 13:
 
\frac{5}{4}+\frac{3}{4}$
 
\frac{5}{4}+\frac{3}{4}$
 
|-
 
|-
|$\displaystyle \frac{a}{b+c} \neq \frac ab + \frac ac$} || $\displaystyle \frac{4}{8}=\frac{4}{3+5} \neq
+
|$\displaystyle \frac{a}{b+c} \neq \frac ab + \frac ac$ || $\displaystyle \frac{4}{8}=\frac{4}{3+5} \neq
 
\frac{4}{3} + \frac{4}{5}=\frac{32}{15}$ || $\displaystyle \frac{a+c}{b+d}\neq\frac ab+\frac cd$ || $\displaystyle \frac{8}{10}=\frac{3+5}{4+6} \neq
 
\frac{4}{3} + \frac{4}{5}=\frac{32}{15}$ || $\displaystyle \frac{a+c}{b+d}\neq\frac ab+\frac cd$ || $\displaystyle \frac{8}{10}=\frac{3+5}{4+6} \neq
 
\frac{3}{4}+\frac{5}{6}=\frac{38}{24}$
 
\frac{3}{4}+\frac{5}{6}=\frac{38}{24}$
Line 19: Line 19:
  
 
[[Exercícios-1|Exercícios]]
 
[[Exercícios-1|Exercícios]]
 +
 +
[[Matemática Elementar#Números e conjuntos|Voltar]]   [[Potências|Seguinte]]

Latest revision as of 18:10, 28 January 2013

[edit] Operações com frações

Propriedades Exemplos Propriedades Exemplos
$\displaystyle \frac{a}{b}\pm \frac{c}{d}=\frac{ad\pm cb}{bd} \land b, d \ne 0$ $\displaystyle \frac{2}{3}-\frac{4}{5}=\frac{2\times 5-4 \times 3}{3 \times 5}=-\frac{2}{15}$ $\displaystyle \frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd} \land b, d \ne 0$ $\displaystyle \frac{2}{3}\times \frac{4}{5}=\frac{2\times 4}{3 \times 5}=\frac{8}{15}$
$\displaystyle \frac{\;\frac{a}{b}\;}{\frac{c}{d}}=\frac{ad}{bc} \land b, c, d \ne 0$ $\displaystyle \frac{\frac{3}{5}}{\;\frac{7}{8}\;}= \frac{3 \times 8}{5 \times 7}=\frac{24}{35}$ $\displaystyle \frac{ab+ac}{a} = b+c \land a\neq 0$ $\displaystyle \frac{6+3}{3} = \frac{3 \times (2+1)}{3}=2+1=3$
$\displaystyle\frac{ab+c}{a} \neq b+c$ $\displaystyle \frac{3 \times 2+1}{3}\ne 2+1$ $\displaystyle \frac{b+c}a=\frac ba+\frac ca$ $\displaystyle \frac{5+3}{4}= \frac{5}{4}+\frac{3}{4}$
$\displaystyle \frac{a}{b+c} \neq \frac ab + \frac ac$ $\displaystyle \frac{4}{8}=\frac{4}{3+5} \neq \frac{4}{3} + \frac{4}{5}=\frac{32}{15}$ $\displaystyle \frac{a+c}{b+d}\neq\frac ab+\frac cd$ $\displaystyle \frac{8}{10}=\frac{3+5}{4+6} \neq \frac{3}{4}+\frac{5}{6}=\frac{38}{24}$

Exercícios

Voltar   Seguinte

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox