Exercícios 6

From Matemática
Jump to: navigation, search

1. Estude a continuidade das seguintes funções, nos respectivos domínios:

1.1 $f(x)\ = \ \left\{ \begin{array}{ll} x^2,& x\geq 0 \\ & \\ 1, & x<0\end{array}\right.$

1.2 $g(x)=\left\{\begin{array}{ll} x^2,& x> 0 \\ & \\ 1, & x<0\end{array}\right.$

1.3 $h(x)=\left\{\begin{array}{ll} |x|,& x\neq 0 \\ & \\ -1, & x=0\end{array}\right.$

1.4 $i(x)=\left\{\begin{array}{ll} x^3+x,& x\geq -1 \\ & \\ 1-x, & x<-1\end{array}\right.$

1.5 $j(x)=\left\{\begin{array}{ll} 2x+1,& x>3 \\ & \\ -x^2+3x, & x\leq 3\end{array}\right.$

1.6 $l(x)=\left\{\begin{array}{ll} |x+1|,& x\in [-2,0] \\ & \\ \frac{1}{x}, & x\in ]0,2[\\ & \\ x^2-4x, & x\in [2,4]\\ \end{array}\right.$

2. Calcule, caso existam, os seguintes limites:

2.1 $\displaystyle \lim_{x \to + \infty}\frac{5x^2}{x^2 +10}$

2.2 $\displaystyle \lim_{x \to +\infty} \left( 1+ \frac{2}{x} \right)^x $

2.3 $\displaystyle \lim_{x \to0}\frac{\cos x-1}{3x^2}$

2.4 $\displaystyle \lim_{x \to +\infty}\frac{\ln(5+x)}{4+x}$

2.5 $\displaystyle \lim_{x \to 2}\left(2x-\sqrt{4x^2-x}\right) $


2.6 $\displaystyle \lim_{x \to 3^-}\frac{1}{3-x}$

2.7 $\displaystyle \lim_{h \to 0}\frac{(a-h)^4-a^4}{h}$

2.8 $\displaystyle \lim_{x \to 1}\frac{x-1}{\sqrt{(x-1)^2}}$

2.9 $\displaystyle \lim_{x \to +\infty}x\left(e^{\frac{1}{x}}-1\right)$

2.10 $\displaystyle \lim_{t \to 0}\frac{1-\cos(t)}{t}$

2.11 $\displaystyle \lim_{x \to 0}\frac{e^x-1}{e^{2x}-1}$

2.12 $\displaystyle \lim_{x \to 0}\frac{\sin\frac{x}{2}}{x}$

2.13 $\displaystyle \lim_{x \to 0}[\cos(2x)]^{\frac{1}{x^2}}$

2.14 $\displaystyle \lim_{x \to 0^+}\left(\frac{1}{x}\right)^x $

2.15 $\displaystyle \lim_{x \to 0^+}x^{\frac{1}{\ln x}}$


3. Estude a continuidade da função $$f(x)\ = \ \left\{ \begin{array}{ll} \frac{1}{1+\ln x},& x\in]0,1] \\ & \\ 0, & x=0\end{array}\right.$$ no seu domínio.

4. Determine, caso existam, as assíntotas dos gráficos de cada uma das seguintes funções:

4.1 $f(x)=\displaystyle\frac{x^2-7x+10}{x-6}$;

4.2 $g(x)=\ln(x^2-2x+2)$;

4.3 $h(x)=\sqrt{4x^2-2x+3}$;

4.4 $i(x)=e^{-\frac{1}{x}}$;

4.5 $i(x)=\displaystyle\frac{\ln x}{x}$.



Voltar

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox